Data sheet I Technical Description and Installation Instructions

Document number: DB-KU-100113-6 From firmware version: V2.03.00

Initial creation: March 2023 From serial number: xxx1318

DML02 | DML02_ex version:
Density sensor DLO-M2 | DLO-M2_ex

Contents

Notes about the data sheet	3
Safety notes	3
Product description	4
Installation, start-up and uninstallation	5
Cleaning and repair	7
Disposal	7
Product specification	7
Modbus	12
Download area	18
Website	19

Notes about the data sheet

Use and safekeeping

- This data sheet is an integral component of the density sensor.
- Keep the data sheet in the immediate vicinity of the place of use.
- In case of transfer to third parties, pass on the data sheet or relevant content to them.
- Read the data sheet carefully.
- We reserve the right to make changes.

A WARNING

Use of the DLO-M2_ex version

This document is only valid in connection with the DLO-M2_ex with the safety instructions DB-KU-100206-*. The asterisk (*) stands for the version.

Function

The data sheet provides information for safe use and installation of the density sensor.

Symbols used

The following symbols are used in the data sheet to draw attention to dangerous situations and to indicate instructions for action:

Symbol	Description
▲ WARNING	Leads to death or serious injury if not avoided.
NOTICE	Information on facts that do not involve physical injury.
•	Single-step handling instruction
1. / 2. / 3.	Multi-step handling instruction

Safety notes

Intended use

- Depending on the ordered version, the measuring instrument can also measure explosive and inflammable media.
- Measuring instruments for use in hazardous areas are specially marked on the type plate.
- The density sensor is to be used exclusively for measuring the density of fluids. Only permitted media may be used.
- Check by means of the type plate whether the ordered measuring instrument can be used for its intended purpose in the area relevant for approval (e.g. explosion protection).
- Failure to observe the area of application can impair safety. The manufacturer shall not be held liable for damage arising from improper use.

Qualification of personnel

 The density sensor may be installed by specialist personnel only.

Operating safety

- The owner/operator is responsible for interferencefree operation of the density sensor.
- Only operate the density sensor in a technically perfect and safe operating condition.
- In case of increased medium temperature, ensure protection against accidental contact to avoid burns.
- Unauthorised modifications or repairs to the density sensor are not permitted and can lead to unforeseeable dangers.

Product safety

 The density sensor complies with the guidelines listed in the EU Declaration of Conformity. By affixing the CE mark, TrueDyne Sensors AG confirms this fact.

Notes about the data sheet 3

Product description

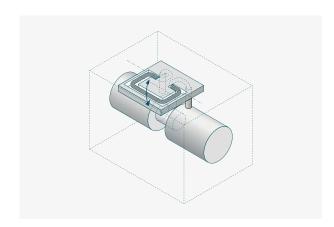
Overview

The density sensor was designed for measuring the density of fluids. This takes place using a microelectromechanical system (MEMS) with a microchannel shaped liked the Greek letter omega (omega chip), which is built into an internal bypass.

When the medium flows through the density sensor, the bypass arrangement generates a pressure gradient via the microchannel, which allows the medium to reach the omega chip. The medium influences the physical properties of the excited sensor (resonance frequency and quality), and these are digitised and evaluated in the microcontroller. The measured values can be read out via the serial interface (RS-485, Modbus).

Thus, density measurements in the range of 0...1200 kg/m3 at a flow rate of 0...10 l/h can be realised.

Further options are available regarding an extended density range, viscosity measurement and density measurement of gases. The specifications can be found in the corresponding documentation.


Omega chip

The omega chip, a vibronic microsystem, is the heart of the measuring system and is used for sensor signal

generation in the overall system. An essential component of this microsystem is a silicon tube (microchannel), which is electrostatically set into oscillation in a vacuum atmosphere. To compensate for temperature effects, a platinum resistor is integrated, which allows local real-time temperature measurement. The omega chip essentially consists of crystalline silicon and glass.

Density measurement

The density sensor uses the omega chip for density measurement. For this purpose, the filled microchannel is brought to resonant oscillation and analysed.

Measuring principle (omega chip)

The resulting resonant frequency of the microchannel depends on the mass and thus on the density of the medium in the microchannel: The greater the density of the medium, the lower the resonant frequency. Thus

the resonant frequency is a function of the medium density.

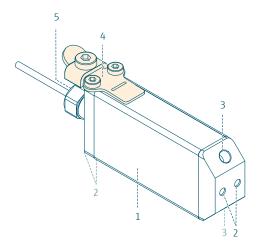
$$f \propto -\sqrt{\frac{\mathbf{E} \cdot \mathbf{I}}{\rho_{\text{Tube}} \cdot \mathbf{A}_{\text{Tube}} + \rho_{\text{Fluid}} \cdot \mathbf{A}_{\text{Fluid}}}}$$

f = resonant frequency, $E \cdot I$ = stiffness of the tube, ρ_{Tube} = tube density, A_{Tube} = tube cross-section, ρ_{Fluid} = medium density, A_{Fluid} = medium cross-section

Possible applications

The density sensor can be used for direct and indirect density measurements. While a product property or quality can be determined with the direct density measurement, an indirect density measurement using tables and calculation algorithms makes it possible to determine the concentration of fluid mixtures.

The density sensor can be used in the following applications, for example:


Supplement volumetric flow measurement in orifice plates, turbines or displacement devices to enable mass measurement. The density sensor takes into account temperature changes and thereby takes temperature measurements into account. It is also possible to write the externally measured pressure into the density sensor (see special documentation for gas measurement).

Product description

 Monitoring and controlling the quality of fuel mixtures such as E10 or biodiesel.

Product design

Product design of density sensor DLO-M2 | DLO-M2_ex

- 1 Density sensor DLO-M2(_ex)
- 2 Mounting holes for mechanical fastening (6 x M3 threaded holes)
- 3 Fluid interface (2 x M5 threaded holes)
- 4 Clamp on grounding plate with screws M3×6 TORX
- 5 Electronic interface for communication and power supply

NOTICE

For the DLO-M2 (non-ex), item 4 (clamp on grounding plate with screws M3×6 TORX) is not applicable. Marked orange in the graphic.

Scope of delivery

Density sensor (including transport safety devices)

Product identification

The density sensor is identified by a consecutive, eleven-digit serial number. This is installed on the outside of the housing and can also be viewed via Modbus.

Installation, start-up and uninstallation

Fastening the density sensor mechanically

► Fix the density sensor with M3 screws using the provided mounting holes (4 mm depth). Maximal tightening torque 30 cNm (typically 15 to 20 cNm)

Dimensions in mm for mechanical fastening

Making the fluid connections for the density sensor

- With a flow rate >10 l/h, installation in a bypass line is recommended to limit the flow rate through the density sensor to <10 l/h.
- The bypass line can be led to a collecting tank or back to the main line.

A WARNING

Danger of injury due to dangerous process conditions and pipe break

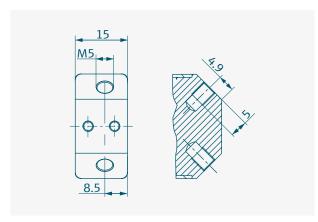
- ► Empty and depressurize the pipeline before installing the density sensor.
- ► Take high temperatures into account.
- ▶ If necessary, fasten the density sensor mechanically.

NOTICE

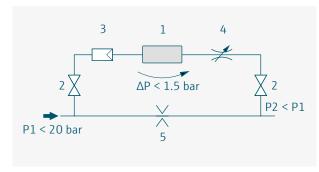
Clogging of the microchannel

▶ If necessary, install a filter upstream of the density sensor to prevent the microchannel from clogging.

NOTICE


Delayed measurement signal for installation in bypass

- ► Note the time delay, for example for open-loop process control.
- **1.** Remove all remaining packaging materials.
- **2.** Remove transportation safety devices on fluid connections.


Installation, start-up and uninstallation

3. Install the density sensor at fluid connections with M5 connectors (thread depth 5 mm) in the pipeline, whereby flow and installation direction are not relevant. Also follow the instructions in the operating manual of the connector used.

Dimensions in mm for fluid installation

Installation example: 1 = Density sensor; 2 = Valve; 3 = Filter; 4 = Flow restrictor; 5 = Orifice

Making the electrical connections for the density sensor

A WARNING

Death or severe injury due to incorrect connection

- ► Electrical connection work may be carried out by correspondingly trained specialist personnel only.
- ► Observe installation codes and requirements valid in the respective country.
- ► Comply with local occupational safety requirements.

WARNING

No current-limiting fuse

► Ensure overcurrent protection (I_{max} = 500 mA) through external circuit.

A WARNING

Use in areas with an explosion hazard

The density sensor DLO-M2 (non-ex) has no approval for use in hazardous areas.

- ► When operating in areas with an explosion hazard, ensure explosion protection.
- ► Connect the density sensor to the higher-level system. Observe the cable assignment, see "Cable assignment" on page 11.

NOTICE

RS-485 point-to-point connection

- ► The variant DLO-M2_ex is designed for a RS-485 point-to-point connection.
- \blacktriangleright Variant DLO-M2_ex: On the client side a 330 Ω termination resistor must be used between the RS-485 lines (D0 and D1).

► The serial interface is based on the "Modbus over serial line" specification.

Integrating the density sensor into the system

The density sensor sends the measured data to the readout system via the data line in Modbus RTU transmission mode. General settings of the serial Modbus RTU interface:

NOTICE

- ► Modbus RTU protocol implemented according to specification V1.1b3
- ► Modbus registers refer to the start value 0
- ► For the sensor the typical response time is 10...20 ms
- ► For further Modbus information see section Modbus

NOTICE

The density sensor does not include a pressure sensor. However, it is possible to the possibility of writing the externally measured pressure into the density sensor (see special documentation for gas measurement). gas measurement).

Switching on the density sensor

► Switch on the power supply. After the power supply is switched on, the density sensor starts automatically after an initialization routine.

Installation, start-up and uninstallation

Uninstalling the density sensor

A WARNING

Danger to personnel and environment from media that are hazardous to health

- ► Ensure that no media hazardous to health or the environment can escape when loosening the fluid connection.
- ► Ensure that no residues of hazardous substances can escape from the density sensor when the mechanical fastenings are loosened by changing their position.
- **1.** Disconnect the cable connections of the electrical connections from the density sensor.
- 2. Disconnect the fluid connections.
- **3.** Undo the mechanical fastening.

Cleaning and repair

Carrying out cleaning of the housing

NOTICE

Cleaning agents may cause damage to the housing

- ▶ Do not use high-pressure steam.
- ► Use only permitted cleaning agents.
- ► Permitted cleaning agents:
 - Mild soap solutions
 - Methyl or isopropyl alcohol
 - Water

Carrying out cleaning of the microchannel

NOTICE

Damage to the microchannel possible

- ► Use only permitted cleaning agents.
- **1.** Flush with permitted cleaning agents. Permitted cleaning agents:
 - isopropanol (IPA), ethanol, petroleum ether (e.g. petroleum 80 to 110), acetone and hexane
- **2.** Then, flush with dry air until there is no more cleaning agent in the microchannel.
- **3.** Fill the density sensor with fluid with a known density value. Deviations from the nominal density value that are greater than the specified maximum measuring deviation indicate residues in the microchannel.

Disposal

Disposing of the density sensor

▲ WARNING

Danger to personnel and environment from media that are hazardous to health

- ► Ensure that the density sensor and all cavities are free of any residues of the measuring medium that are hazardous to health or the environment.
- ► Send density sensor components for recycling. Observe codes and requirements valid in the respective country.

Product specification

General

Measured variable

Density and variables derived from it (e.g. standard density, concentration, etc.)

Permitted media

NOTICE

Damage to the microchannel possible.

▶ Do not use helium.

Particle-free (<30 μ m) hydrocarbons e.g.

- Gasoline E5 / E10 / E85
- Diesel B7 / B10 / XTL
- Jet-A1 (also F-35 or JP-8)
- M100 (methanol)
- Isopropanol
- OME* (synthetic fuel)
- LPG*

Aqueous media such as:

- AdBlue®*
- Glycol blends*

Additional media can be used after individual clarification where applicable.

Various gases:

 See special documentation DLO-M2 | DLO-M2_ex density sensor for gases.

Cleaning and repair

Measurement performance

Max. measurement deviation for liquids

(For gases, see special documentation for gases.)

• Density: $\pm 0.5 \text{ kg/m}^3$

■ Temperature: ±0.3 °C

Option

 Density: ±0.2 kg/m³ or ±[0.0075 x abs(T-25 °C)] kg/m³ if the max. measurement deviation is >0.2 kg/m³

■ Temperature: ±0.15 °C or ±[0.005 x abs(T-25°C)] °C.

NOTICE

Pressure-dependent density measurement accuracy

These specifications are in relation to measurements of liquids. For gas measurements see special documentation. The measured values are referred to 1.01325 bar (abs) as standard. A parameterisation to another pressure by order or by own parameterisation is also possible. At higher pressure, the density sensor indicates a too low density. The density deviation Δp is Δp with pressure change:

$$\Delta \rho = (0.07 \pm 0.02) \frac{\text{kg}}{\text{m}^3 \cdot \text{har}} \cdot \Delta \rho$$

- ► Note pressure-dependent density measurement accuracy.
- ► If necessary, correct the measured density value due to the influence of pressure:

$$\rho_{\text{Fluid}} = \rho_{\text{mess}} + \Delta \rho$$

Here, ρ_{Fluid} is the actual density at process pressure and ρ_{meas} is the density measured by the density sensor.

 Order option: Calibration to desired pressure (1 to 20 bar (abs)).

Repeatability

■ Density: ±0.1 kg/m³

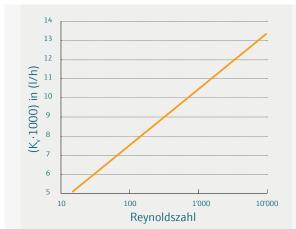
■ Temperature: ±0.05 °C

Temperature conditions

Permitted medium -40 to +60 °C temperature

Permitted ambient -40 to +60 °C temperature

Permitted storage -40 to +60 °C temperature


Area of application

Permitted measured density value	0 to 1600 kg/m ³
Permitted viscosity	0.3 to 5 mPa s
range	(Optionally 0.3 to 50 mPa s)

Permitted medium pressure	0 to 20 bar (abs) Burst pressure 80 bar (abs)	
Permitted particle size	Max. 30 μm	
Permitted flow range	0 to 10 I/h 0 to 1 I/h for gases	
Vibrations	Vibrations (<20 kHz) have no influence on the measuring accuracy due to the high working frequency of the microchannel.	
Inlet and outlet runs	Inlet and outlet runs have no influence on the measuring accuracy.	
	NOTICE Permitted means that the measuring accuracy of the sensor is within the given specifications.	
Flow/pressure loss conditions	NOTICE To ensure proper operation, the flow rate (Q) must not exceed 10 l/h. For gas measurements, the upper limit is is 1 l/h.	
Units	$[K_v] = m^3/h$, $[Q] = I/h$, $[\Delta p] = bar$, $[\rho] = kg/m^3$, $[\eta] = mPa$ s	

Flow/pressure loss conditions

Flow factor versus Reynolds number (K_v (Re) = [1.28 In (Re) + 1.60] \pm 10%)

Determining the flow factor (K _v ·1000 l/m³)	The flow factor can be read by means of the Reynolds number (<i>Re</i>) via the figure Flow / pressure loss conditions.	
Determination of Re via Ω , ρ and η	$Re \cong \frac{Q \cdot \rho}{2 \cdot \eta}$	
Determination of Q via Δp	$Q = K_v \cdot 1000 \text{ l/m}^3 \sqrt{\frac{\Delta p}{1 \text{ bar}} \cdot \frac{1000 \text{ kg/m}^3}{\rho}}$	
Determination of Δp via Q	$\Delta \rho = \left(\frac{Q}{K_v \cdot 1000 \text{ l/m}^3}\right)^2 \cdot \frac{\rho}{1000}$	

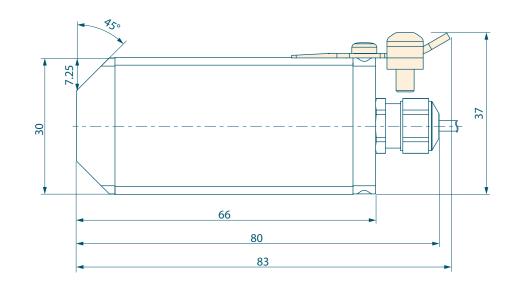
Calculation	If one of the needed factors such as Q is not available, several iteration steps are needed.	
Response time	 The density is recorded with a measuring rate of at least 30 Hz. As a result of internal processing and filtering, the maximum group delay is 1 s. The temperature is recorded with a measuring rate of 2 Hz. As a result of internal processing and filtering, the maximum group delay is 2.5 s. 	

Ambient conditions

Climate class	In accordance with: IEC/EN 60068-2-1 IEC/EN 60068-2-2 IEC/EN 60068-2-30
Electromagnetic compatibility	EMC 2014/30/EU (EN 61326-1)
Vibration and shock resistance	In accordance with: IEC/EN 60068-2-6 IEC/EN 60068-2-27 IEC/EN 60068-2-64
Protection class	IP54 (IEC 60529)

Materials

Housing	Stainless steel:- 1.4404 (316L)- 1.4542 (AISI/SUS 630)
Wetted parts	 BOROFLOAT® 33 glass Silicon Epoxy resin Stainless steel: 1.4542 (AISI/SUS 630 Alternative to stainless steel: 2.4605 (Alloy 59)


Dimensions

Housing	$30 \times 66 \times 15 \text{ mm}^3$ (without cable, cable gland and connection for protective ground)	
Weight	<200 g	
Dimensions of mea- surement channel	160 x 200 μm (500 nl)	

Fluid interface

Fluid interfaces	2 x M5 threaded holes at a 45°
	angle to the side and front sur-
	face

7.6 15

Design, dimensions in mm (orange parts valid for DLO-M2_ex only)

Electrical interface

Cable design	Permanently installed cable Connecting cable type KS-Li 9YD11Y 4xAWG 28, manufac turer: Kabel Sterner	
Cable length	3 m (optionally up to 20 m)	
Cable outer diameter	2.3 mm	
Wire diameter	4 x AWG 28	

Level control

Digital communication lines and power supply in one common shielded cable

Unidirectional, RS-485

NOTICE

For the variant DLO-M2_ex

 Provide a 330 Ω termination resistor on the client side (see Page 6)

For the variant DLO-M2 (non-ex)

► For the integration in RS485-Modbus a bus termination according to specification "Modbus over serial line V1.02" has to be provided.

Energy supply

Maximum current draw 26 mA, maximum power consumption 350 mW.

NOTICE

The power supply unit must be safety tested (e.g. PELV, SELV). For the variant DLO-M2 ex

➤ Supply: 9.4 V to 13.3 V (typical: 12 V)

For the variant DLO-M2 (non-ex)

► Supply: 5 V to 13.3 V

A WARNING

For DLO-M2_ex, observe safety instructions DB-KU-100206-*. The asterisk (*) stands for the version.

Zener barriers (supply and RS485)

Dielectric strength

Version DLO-M2_ex

The reference potential (GND) is connected to the housing and the ground connection (see product design). There is no galvanic isolation between the supply circuits, the communication interface and GND.

Dielectric strength Version DLO-M2 (non-ex) (continued) There is a capacitive coupling between the reference potential (GND) and the housing (ground). The dielectric strength is 50 V. There is no galvanic isolation between the supply circuits, the communication interface and GND. The cable shield is connected to the sensor housing. The shield must be connected to the protective earth on the connection side according to the "Modbus over serial line V1.02" specification. Cable assignment Wire color Assignment yellow RS485 B, D1 RS485 A, green D0 GND (signal brown ground),

NOTICE

white

The wire color code does not comply with the "Modbus over serial line V1.02" specifications.

common

V_{DD} (supply voltage)

Certificates and approvals

CE marking

The density sensor meets the legal requirements of the EC directives.

TrueDyne Sensors AG confirms the successful testing of the density sensor with the attachment of the CE mark.

IECEX, ATEX

A WARNING

Applies to the DLO-M2_ex version

Depending on the version, the product complies with the following directives:

		DLO-M2	DLO-M2_ex
ATEX	2014/34/U(L96/309)		✓
LVD	2014/35/EU(L96/357)	~	✓
EMC	2014/30/EU(L96/79)	~	✓
RoHS	2011/65EU(L174/88)	✓	✓

The following standards are complied with:

	DLO-M2	DLO-M2_ex
EN 61010-1: 2010	~	~
EN IEC 60079-0: 2019		~
EN 60079-11: 2012		~
EN 61326-1: 2013	~	~
EN 61326-2-3: 2013	~	✓
EN 50581: 2012	~	~

Legal restrictions

Fields of industry

For legal reasons, the sensor may not be used in the following industries in the USA:

- Military (any applications in the military field whatsoever, including airplanes, vehicles or military structures. This does not include fuel delivery and fuel dispensing when rrefuelling on the ground)
- Aerospace (applications in flying objects of any kind. Excluded from this is fuel delivery and fuel dispensing when refuelling on the ground)
- Fuel cells (use in stationary or mobile fuel cells)
- Medical devices (objects or substances used for medical purposes for human beings - the pharmaceutical industry is not affected)

Modbus

Default settings:

Baud rate	19200 BAUD
Data bits	8
Parity	Even
Byte order	1-0-3-2
Stop bits	1 bit

Modbus address	247
FlowControl	None (0)
Transmission type	Modbus RTU (protocol)
Temperature unit	°C
Pressure unit	bar abs
Density unit	kg/m³
*Dynamic viscosity unit	mPa s
*Kinematic viscosity unit	mm²/s

NOTICE

▶ *Optional: see product viscosity sensor VLO-M2 | VLO-M2 ex

The following Modbus RTU functions are supported:

Code	Name	Description
0x01	Read Coils	Read one or more coils
0x03	Read Holding Registers	Read a consecutive holding register block
0x04	Read Input Registers	Read one or more successive registers
0x05	Write Single Coil	Write one coil
0x06	Write Single Register	Write one single register

0x0F	Write Multiple Coils	Write multiple successive coils
0x10	Write Multiple Registers	Write multiple successive registers

NOTICE

The following Modbus RTU functions are not supported

► 0x02	Read Discrete Inputs
▶ 0x07	Read Exception Status
▶ 0x08	Diagnostics
► 0x0B	Get Comm Event Counter
▶ 0x0C	Get Comm Event Log

When addressing the devices, it is essential to ensure that there are not two devices with the same address. In such a case an abnormal behaviour of the whole serial bus can occur, because the master is then no longer able to communicate with all existing slaves on the bus.

Compared to the "Modbus over serial line V1.02" protocol, the following differences exist:

- ▶ 3.6 Cables The cable strands are not twisted together.
- ▶ 3.7 Visual Diagnostics There is no LED display on the sensor.
- ► "Line Polarisation" is not necessary for the sensor and is not provided.

Min. 32 sensors (non-ex) are supported in the bus system. supported.

Modbus 12

Modbus Register Informationen

Info

Name	Address	Data type	Selection/input	Operator	Mainte- nance
Memory Version	100	UINT16		r	r
Serial Number	101 107	STRING14		r	r
Software Version	108	UINT16		r	r
Software Build	109	UINT16		r	r
Pin	110 117	STRING16		r	r
Device Identity	1	UINT16		r	r
Device Name	7262 7269	STRING16		r	r
Firmware Version	7276 7279	STRING8		r	r
Access status tooling	2177	UINT16	0: Operator 1: Maintenance 2: Service (only TrueDyne)	r	r

Config

Modbus

Name	Address	Data type	Selection/input	Operator	Mainte- nance
Modbus address	4909	UINT16	1247	r	r/w
Baud rate	4911	UINT16	3: 9600 4: 19200 5: 38400 6: 57600 7: 115200	r	r/w
Parity	4913	UINT16	0: None / 2 stop bits 1: Even / 1 stop bit 2: Odd / 1 stop bit 3: None / 1 stop bit	r	r/w
Byte order	4914	UINT16	0:0-1-2-3 1:3-2-1-0 2:2-3-0-1 3:1-0-3-2	r	r/w

Device

Name	Address	Data type	Selection/input	Operator	Mainte- nance
Restart Device	6816	UINT16	0: False 1: True	r/w	r/w
Device Tag	4900 4907	STRING16	Freely selectable	r	r/w
Enter Access code	2176	UINT16	065535 For maintenance 8646	r/w	r/w
FB User Level	2179	UINT16	0: Operator 1: Maintenance 2: Service (TrueDyne only)	r	r/w
Reset Device	201	UINT16	0: Off 1: Reset to SW-defaults	r	r/w

Sensor

Name	Address	Data type	Selection/input	Operator	Mainte- nance
Pressure compensation	5183	UINT16	0: Off 1: Fixed Value 2: External Value	r	r/w
Fixed Pressure	5184 5185	FLOAT32		r	r/w
External Pressure	2439 2440	FLOAT32		r	r/w

NOTICE

- ► For pressure compensation, the pressure can be written as a fixed parameter. By default, the pressure value is 1.01325 bar abs.
- ▶ The density sensor does not include a pressure sensor. However, it is possible to write the externally measured pressure into the density sensor (see special documentation for gas measurement).
- ▶ For frequent writing of the pressure value, please set the "Pressure compensation" to "External value" and use the "External pressure" parameter. This value is not stored in the EEPROM. Frequent writing of the "Fixed pressure" parameter can lead to a memory memory violation in the EEPROM.

Pressure unit	2129	UINT16	0: bar abs 1: bar gauge 2: psi abs 3: psi gauge 4: kPa abs 5: kPa gauge	r	r/w
Density unit	2106	UINT16	0: g/cm ³ 1: g/cc 2: kg/l 3: kg/m ³ 4: lb/ft ³ 5: lb/gal 6: Specific gravity	r	r/w

NOTICE

► Specific gravity (SG) is calculated with the current temperature (T) in relation to water.

$$SG = \frac{\rho_{\text{medium}}(T)}{\rho_{\text{water}}(T)}$$

Temperature unit	2108	UINT16	0: °C 1: K 2: °F 3: °R	r	r/w
² Dynamic viscosity unit	2110	UINT16	0: cP 1: P 2: Pa s 3: mPa s	r	r/w
² Kinematic viscosity unit	2111	UINT16	0: m ² /s 1: mm ² /s 2: cSt 3: St	r	r/w
Density single point	205 206	FLOAT32		r	r/w
Density offset	5528 5529	FLOAT32		r	r/w
Reset density offset	207	UINT16	0: Off 1: Reset	r	r/w
² Viscosity single point	208 209	FLOAT32		r	r/w
² Viscosity offset	5530 5531	FLOAT32		r	r/w
² Reset viscosity offset	210	UINT16	0: Off 1: Reset	r	r/w
¹ Single point adjust- ment	2510	UINT16	0: Off 1: Water	-	r/w

MinMaxValues

Name	Address	Data type	Selection/input	Operator	Mainte- nance
LowerBoundDensi- tyRange	2600 2603	FLOAT32		r	r
UpperBoundDensi- tyRange	2604 2605	FLOAT32		r	r
LowerBoundTem- peratureRange	2608 2609	FLOAT32		r	r
UpperBoundTempe- ratureRange	2612	FLOAT32		r	r
LowerBoundPressu- reRange	2616 2617	FLOAT32		r	r
UpperBoundPressu- reRange	2620 2621	FLOAT32		r	r
LowerBoundCon- centrationRange	2624 2625	FLOAT32		r	r/w
UpperBoundCon- centrationRange	2628 2629	FLOAT32		r	r/w
² LowerBoundVisco- Range	2632 2633	FLOAT32		r	r
² UpperBoundVisco- Range	2636 2637	FLOAT32		r	r

NOTICE

- ▶ ¹For balancing with gases: see special documentation for gases.
- ²Optional: see product viscosity sensor VLO-M2 | VLO-M2_ex

Modbus 15

Concentration

Name	Address	Data type	Selection/input	Operator	Mainte- nance
LiquidType In addition to the LiquidType there is the GasType (see special documenta- tion for gases).	26491	UINT16	0: Off 1: User coeffs 2: Fructose in water 3: Glucose in water 4: Sucrose in water 5: Invert sugar in water 6: Hydrogen peroxide in water 7: Ethanol in water (OIML) 8: Methanol in water 9: Ethyleneglycol in water 10: HFCS42 11: HFCS55 12: HFCS90 13: Sodium chloride in water 14: Total dissolved solids in water 15: Butane in Propane	r	r/w
Custom Mixture Text	2584 2588	STRING10	An additional mixture can be parameterised by TrueDyne. The designation of the mixture can be stored here.	r	r

Concentration unit	2438	UINT16	0: SGU 1: "Brix 2: "Balling 3: Proof/Vol 4: %Vol 5: %Vol@20°C 6: "Plato 7: mol/l 8: %ABV@20°C 9: %mass 10: mg/l 11: %StdVol	r	r/w

NOTICE

▶ Desired liquid and gas types can be specified when ordering.

Process Variable

Name	Address	Data type	Selection/input	Operator	Mainte- nance
Density	2012 2013	FLOAT32		r	r
^{5,6} Density compensated	2030 2031	FLOAT32		r	r
Temperature	2016 2017	FLOAT32		r	r
Pressure	2088 2089	FLOAT32		r	r
^{5,6} Dynamic viscosity	2018 2019	FLOAT32		r	r
^{5,6} Kinematic visco- sity	2082 2083	FLOAT32		r	r
⁶ Concentration	2597 2598	FLOAT32		r	r

Status

Name	Address	Data type	Selection/input	Operator	Mainte- nance
⁷ DensityInRange	12	UINT16	0: False 1: True	r	r
⁸ SensorOK	13	UINT16	0: False 1: True	r	r
⁷ Temperatureln- Range	14	UINT16	0: False 1: True	r	r
⁷ PressureInRange	15	UINT16	0: False 1: True	r	r
⁷ ConcentrationIn- Range	16	UINT16	0: False 1: True	r	r
^{5,7,8} ViscosityInRange	17	UINT16	0: False 1: True	r	r

NOTICE

- ► 5Optional: see product viscosity sensor VLO-M2 | VLO-M2 ex
- ▶ 6The desired software option must be specified when ordering.
- ► ⁷Testing is performed according to the "Lower" and "Upper" bounds defined in the parameters (see p. 16).
- ▶ 8The status of the sensor is continuously checked internally. In normal operation, SensorOK = 1 is output. If the properties of the sensor are outside a defined range, e.g. in the event of faults due to air bubbles in the sensor, this parameter is set to 0.

Download area

On our website www.truedyne.com you will find this document and other useful documents in our download area.

Documents and files

Product information

- Data sheet
- Safety notes
- STEP file
- Special documentation density sensor DLO-M2 | DLO-M2_ex for gases
- Calibration certificate (optional)

Declarations of conformity

- CE marking EU declaration of conformity
- RoHS III EU declaration of conformity

Training courses

Basics of density measurement training

https://www.truedyne.com/dlo-m2_ex_download_en

https://www.truedyne.com/dlo-m2_download_en

TrueDyne Sensors AG 18

Website

Are you looking for more innovative sensors for density and viscosity? Visit our website www.truedyne.com and learn more about our current product portfolio.

Product portfolio

Sensors for measuring fluids

For example:

- DLO-M2 density sensor
- VLO-M2 viscosity and density sensor
- FLT-M1 flow sensor

Sensors for measuring gases

- DGF-I1 density sensor
- Nanomass density sensor

- www.truedyne.com

TrueDyne Sensors AG 19

