LEVEL

Level Switches

Level Switches

Пnders

Introduction:	Applications, Operation ... 3
	Features and Benefits ... 4
	Technical Information \qquad 5
	General View ..6-9
Level Switches with one Switchpoint made of Brass and Stainless Steel:	UNS-MS1/8-BN25, UNS-VA1/8-VA27 10-11
	UNS-MS1/4-BN30, UNS-VA1/4-VA52 12-13
	UNS-MS3/8-BN30, UNS-VA3/8-VA52 \qquad 14-15
	UNS90-MS3/8-BN30, UNS90-VA3/8-VA52 16-17
	-S with Shipbuilding Approvals
	UNS-VA/SB4, UNS-VA/SB5 18-19
Level Switches with one Switchpoint made of Plastic:	UNS-PVC1/8-PVC25, UNS-PVC3/8-PVC25........... 20
	UNS-PTFE1/4-PTFE55 21
	UNS-PA16-PA18, UNS-PA1/2"NPT-PA18,
	UNS-PA16-PA18-MS-A \qquad 22
	UNS-PP16-PP18, UNS-PP1/2"NPT-PP18 23
Multi Level Switches with several Switchpoints:	UNS 1000 Level Switch Series24-25
	- S with Shipbuilding Approvals \qquad 26-27
	- G Float Chamber Design \qquad 28
	UNS 1000 Options 29
	UNS 2000 Level Switch Series \qquad 30-31
	- S with Shipbuilding Approvals \qquad 32-33
	UNS 2000 Options 34
Level Switches with Ex-Approval:	UNS 2100Ex Level Switch35-36
Information	Catalog Overview, Fax Order Form 37

information
Catalog Overview, Fax Order Form 37

Application

Where fluids must be stored or handled the Barksdale level switches with their large variety from a simple switch to multi level stations are a logic choice.

When temperature and level measurement are required at the same time in tanks or reservoirs it is practical and economical to combine these in the level switches UNS-1000 with temperature sensor and UNS-2000 with additional temperature switch.

Application

Level

All level switches are equipped with hermetically sealed reed switches. The contact is switched by an annular rod bar magnet which is positioned within the float.

The reed switch is available as normally closed, normally open or SPDT-contact. The only moving part of the level switch is the float sliding along the stem.

Contact modes (NO or NC) are defined on the basis of an empty tank and for installation through the top or through the bottom (when specified as "-U").

NO: Normally open,

- Closing contact by rising level
- Opening contact by falling level

NC: Normally closed,

- Opening contact by rising level
- Closing contact by falling level

The density (specific gravity) of the medium will influence the floating position of the float. In very light oils or solvents the float might change (lower) it's position up to $15-20 \mathrm{~mm}$ or more. If this is critical in your application consult us for details.

When not specified we will position the switch point for density 1 (water) and the switch action to be on moving upward.

Due to the hysteresis (dead band) of the reed contacts the action on rising level (reactuation point) will be several millimetres lower than the specified switch point.

Temperature Measuring (optional)

For temperature measurement we offer a PT 100 temperature sensor in our UNS-1000 and UNS-2000.
In the series UNS-2000 we also offer temperature switch functions.
The bi-metal element (TP type) is hermetically sealed, has fixed setpoints in steps of $5^{\circ} \mathrm{C}$ and is installed in the bottom of the stem.

The TP type has gold plated contacts, is very good for low voltage and mA applications, and can still handle large contact loads up to 3 amp at 24 VDC or 12 V AC .
Setpoints between $-30 \ldots 130^{\circ} \mathrm{C}$, the hysteresis is only $2^{\circ} \mathrm{C}$ to $4^{\circ} \mathrm{C}$ at mid range.

The coding of the temperature switch is simple, just specify TP then the setpoint in ${ }^{\circ} \mathrm{C}$ and 1 or 2 for the contact mode.
I.e. TP $60 / 1$ for setpoint $60^{\circ} \mathrm{C}$ contact NO and closes on increasing temperature at $60 \pm 5^{\circ} \mathrm{C}$. The TP $60 / 2$ is then NC and opens on increasing temperature.

Consult factory for availability of your required version.

T ypical Applications for Level Switches with integrated Temperature Sensor

- switching on heaters to avoid freezing of the medium, or
- high or low temperature alarm in hydraulic tanks (TP type)

Type UNS-2100 Ex is also available with temperature switch and EEx-approval.

Features and Benefits:

- Only moving part: The wearlessly working float.
- NO linkage, bellows or dynamic seals to wear, no service or spare parts needed.
- Easy to install, no calibration needed.
- Welded hollow floats in Stainless Steel and foamed floats in Buna-N (BN) are mostly used. The BN float is a closed cell Buna rubber, very light and very good in most hydrocarbons and water.
- Many special floats are available, consult us for details.
- The position of the float on the stem determines the contact status, open or close. By rotating the float the switch function will be reversed.
- Hysteresis of switch action only a few mm depending on type of contact and float.
- Reed contacts are designed to operate under vibration and are ideal for industrial applications.
- The UNS-1000 and UNS-2000 offer "custom made" specials at standard pricing.
- Approved designs for Zone 0 installations with UNS-2100-EX, according to CENELEC EEx.ib IIC T6 intrinsically safe.
- DNV-, GL-, ABS-, BV-, LR- and RINA-shipboard approvals with the series UNS-1000 S, UNS-2000 S and UNS-VA SB (excluding temperature versions).
- Option for high temperature up to $150^{\circ} \mathrm{C}$, specify -HT.
- Option for splash or protection tube, specify: -DR.
- Option for additional temperature switch(es) specify:-TP.
- Mounting normally vertical downwards through the top, specify - U when mounting will be through the bottom vertical upwards.
- For pressures over 50 bar and/or very low density fluids we have special solutions, consult us for details.
- Many years of experience in level switches and many specials since, include many "exotics" in Hastelloy, Titanium, Teflon etc., will help us to design the special version you might need.

Fig. 3

Fig. 1
Protection at AC and inductive load with freewheeling diode.

Fig. 2
Protection at DC and inductive load with freewheeling diode.

Fig. 4
Protection against high discharge current of condensers. Depends upon circuit R1 or R2 or both should be used.

Fig. 5
Lamp loads with parallel or serial resistor to switch.

General Technical Information

The indicated values for power, voltage and capacity are valid for purely resistive loads. Quite frequently though, the loads are surrounded by inductive and capacitive components. Very often lamp loads must be switched. In this case, protection of the reed switch against voltage and power peaks must be considered. Of course, each case must be evaluated seperately. But we would like to give some guidelines concerning the wiring of reeds for different loads to avoid premature failure.

1. Inductive loads

Contact protection is relatively simple for direct current (DC). A free-wheel diode is wired parallel to the load. Polarity must be established in such a way that the diode will inhibit at normal operational voltage (current) and short-circuit the power peaks which occur in the opposite direction when the switch opens. (see fig. 1).

It is not possible to use a diode for AC. Here an arcdimming unit has to be used. Generally this unit is a RCunit wired parallel to the switch and hence in series with the load. Sizing of such an arc-dimming unit can be performed according to the nomogram shown in fig. 2 and 3.

2. Capacitative loads and lamp loads

Contrarily to the inductive loads, there are inrush currents for capacitive loads and lamp loads which can lead to disturbance - even to the point of fusing of the contacts. During the wiring of loaded condensators (e.g. cable capacities) a sudden discharge will occur, with an intensity depending on the capacity and length of supply cable to the switch (can be regarded as series resistor). The discharge peak of the current is largely reduced by a series resistor to the condensator. Its size is determined by the possibilities offered by the respective power circuit. It should be as high as possible in order to limit the discharge current to a permitted value. These criteria are valid analogously for the charging of condensors (see fig. 4).

Finally we want to give some details regarding the wiring of lamp loads. Cold incandescent filaments (switched off) have ten times smaller resistance than switched on filaments. That means during switch-on - even for a short period of time only - the current flow is ten times higher than in glowing, static condition of the lamp. This tenfold inrush current can be reduced to an acceptable level by a continously wired limiting resistor. Another possibility is the parallel wiring of a resistance to the switch. This will permanently heat up the switches of the lamp filament only so much as to just prevent it from glowing. Both protective modes result in the loss of capacity (see. fig 5).

General VRew

Level Switches with one Switchpoint

Type UNS-	MS 1/8-BN25 VA 1/8-VA27	$\begin{aligned} & \text { MS } 1 / 4 \text { - BN30 } \\ & \text { VA } 1 / 4 \text { - VA52 } \end{aligned}$	$\begin{gathered} \text { MS 3/8 - BN30 } \\ \text { VA 3/8 - VA52 } \end{gathered}$	$\begin{gathered} 90 \text { - MS 3/8 - BN30 } \\ 90 \text { - VA 3/8-VA52 } \end{gathered}$	$\begin{aligned} & \text { VA / SB4 } \\ & \text { VA / SB5 } \end{aligned}$
Mounting Position	Through top Through bottom	Through top Through bottom	Through top Through bottom	Side mounted	Through top
Stem Material	Brass Stainless Steel 1.4571	Brass Stainless Steel 1.4571	Brass Stainless Steel 1.4571	Brass Stainless Steel 1.4571	Stainless Steel 1.4571
Mounting Element	G 1/8 Mounting thread	G 1/4 Mounting thread	G 3/8 Mounting thread	G 3/8 Mounting thread	Mounting bracket
Float	BN25, $\varnothing=25 \mathrm{~mm}$ VA27, $\varnothing=27 \mathrm{~mm}$	$B N 30, \varnothing=30 \mathrm{~mm}$ VA52, $\varnothing=52 \mathrm{~mm}$	$B N 30, \varnothing=30 \mathrm{~mm}$ VA52, $\varnothing=52 \mathrm{~mm}$	$\mathrm{BN} 30, \varnothing=30 \mathrm{~mm}$ VA52, $\varnothing=52 \mathrm{~mm}$	PE33, $\varnothing=33 \mathrm{~mm}$
Float Material	Buna N-BN Stainl. Steel 1.4571-VA	Buna N-BN Stainl. Steel 1.4571-VA	Buna $N-B N$ Stainl. Steel 1.4571-VA	Buna N-BN Stainl. Steel 1.4571-VA	Polyethylene PE
Min. Fluid Specific Gravity ($\mathrm{g} / \mathrm{cm}^{3}$)	BN25: 0,57 VA27: 0,71	BN30: 0,60 VA52: 0,78	BN30: 0,60 VA52: 0,78	BN30: 0,60 VA52: 0,78	0,80
Max. Pressure (bar)	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 40 \end{aligned}$	$\begin{aligned} & 15 \\ & 40 \end{aligned}$	$\begin{aligned} & 15 \\ & 40 \end{aligned}$	3
Max. Temperature	$80 / 100^{\circ} \mathrm{C}$ - Buna N $105 / 150^{\circ} \mathrm{C}$ - Stainl. Steel	$80 / 100^{\circ} \mathrm{C}$ - Buna N $105 / 150^{\circ} \mathrm{C}$-Stainl. Steel	$80 / 100^{\circ} \mathrm{C}$ - Buna N $105 / 150^{\circ} \mathrm{C}$ - Stainl. Steel	$80 / 100^{\circ} \mathrm{C}$ - Buna N $105 / 150^{\circ} \mathrm{C}$ - Stainl. Steel	$70^{\circ} \mathrm{C}$
Contact Mode	NO / NC SPDT	NO / NC			
Contact Rating	40 VA/W NO / NC 3 VA/W / SPDT	100 VA/W NO / NC 60 VA/W / SPDT	100 VA/W NO / NC 60 VA/W / SPDT	100 VA/W NO / NC 60 VA/W / SPDT	40 VA/W NO / NC
Option	High temperature version	High temperature version	High temperature version	High temperature version	Test equipment
Approval	Shipbuilding approval				
Catalogue Page No.	10-11	12-13	14-15	16-17	18-19

General VRew

Level Switches with one Switchpoint
Material: Plastic

Level Switches

ตeneron Vhew

Multi Level Switches with one ore more Switchpoints

Type UNS-	1000	1000-S	1000-G
Mounting Position	Through top Through bottom	Through top Through bottom	Side mounted
Stem Material	Brass Stainless Steel 1.4571	Stainless Steel 1.4571	Stainless Steel 1.4571
Mounting Element	Flange and thread	Flange and thread	$\begin{gathered} \text { G } 1 / 2 \\ \text { side / bottom } \end{gathered}$
Float	BN25, $\varnothing=25 \mathrm{~mm}$ VA27, $\varnothing=27 \mathrm{~mm}$	BN25, $\varnothing=25 \mathrm{~mm}$ VA27, $\varnothing=27 \mathrm{~mm}$	VA27, $\varnothing=27 \mathrm{~mm}$
Float Material	$\begin{gathered} \text { Buna N-BN } \\ \text { Stainl. Steel 1.4571-VA } \end{gathered}$	$\begin{gathered} \text { Buna N-BN } \\ \text { Stainl. Steel 1.4571-VA } \end{gathered}$	$\begin{gathered} \text { Buna N - BN } \\ \text { Stainl. Steel 1.4571-VA } \end{gathered}$
Min. Fluid Specific Gravity ($\mathrm{g} / \mathrm{cm}^{3}$)	BN25: 0,57 VA27: 0,71	BN25: 0,57 VA27: 0,71	0,71
Max. Pressure (bar)	15	15	15
Max. Temperature	$80 / 100^{\circ} \mathrm{C}$ - Buna N $105 / 150^{\circ} \mathrm{C}$ - Stainl. Steel	$\begin{gathered} 80 / 100^{\circ} \mathrm{C} \text { - Buna N } \\ 105 / 150^{\circ} \mathrm{C} \text { - Stainl. Steel } \end{gathered}$	$90^{\circ} \mathrm{C}$ - Stainl. Steel
Contact Mode	$\mathrm{NO} / \mathrm{NC}$ SPDT	NO / NC SPDT	NO / NC SPDT
Contact Rating	40 VA/W NO / NC 3 VA/W / SPDT	40 VA/W NO / NC 3 VA/W / SPDT	40 VA/W NO / NC 3 VA/W / SPDT
Option	High temp. version, temperature sensor	On request	High temperature version
Approval	---	Shipbuilding approval	---
Catalogue Page No.	24-25	26-27	28

ตenera] VRew

Multi Level Switches with one ore more Switchpoints and Ex-Approval

